AI 원천기술연구 | 서울대학교AI연구원(AIIS)

연구

AI 원천기술연구

서울대학교 AI연구원은 AI의 난제를 해결할 수 있는 세계 최고 수준의 AI 원천기술 인력을
대규모로 보유하고 있는 국내 최대의 AI 연구기관입니다.

뇌인지 (Brain & Mind)

인간과 같이 학습하고 추론할 수 있는 인공지능 개발을 위하여 인간의 뇌인지 과정을 심도있게 탐구하고
뇌인지 과정을 이를 모방한 바이오 지능 모델을 연구합니다.

문태섭공과대학 전기정보공학부

  • 연구실/전공분야M.IN.D (Machine INtelligence and Data science) Lab
  • 연구분야(AI 원천기술)Learning & Reasoning, Vision & Perception, Data Intelligence, Brain & Mind, AI Law & Ethics
  • 연구분야(X+AI)Brain, Bio, Energy

대표논문

Re-weighting Based Group Fairness Regularization via Classwise Robust Optimization. Sangwon Jung, Taeeon Park, Sanghyuk Chun, and Taesup Moon. The 11th International Conference on Learning Representations (ICLR), May 2023

Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks. Hongjoon Ahn, Youngyi Yang, Quan Gan, David Wipf, and Taesup Moon. Neural Information Processing Systems (NeurIPS), December 2022

GRIT-VLP: Grouped Mini-batch Sampling for Efficient Vision and Language Pre-training. Jaeseok Byun, Taebaek Hwang, Jianlong Fu, and Taesup Moon. European Conference on Computer Vision (ECCV), October 2022

Learning Fair Classifiers with Partially Annotated Group Labels. Sangwon Jung, Sanghyuk Chun, and Taesup Moon. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2022

SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning. Sungmin Cha, Beomyoung Kim, Youngjoon Yoo, and Taesup Moon. Neural Information Processing Systems (NeurIPS), December 2021

SS-IL: Separated Softmax for Incremental Learning. Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon. International Conference on Computer Vision (ICCV), October 2021

Fair Feature Distillation for Visual Recognition. Sangwon Jung, Donggyu Lee, Taeeon Park, and Taesup Moon. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021

FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise. Jaeseok Byun, Sungmin Cha, and Taesup Moon. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2021

Continual Learning with Node-Importance based Adaptive Group Sparse Regularization. Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Neural Information Processing Systems (NeurIPS), December 2020

Uncertainty-based continual learning with adaptive regularization. Hongjoon Ahn, Sungmin Cha, Donggyu Lee and Taesup Moon. Proceedings of Neural Information Processing Systems (NeurIPS), December 2019

Fooling neural network interpretations via adversarial model manipulation. Juyeon Heo, Sunghwan Joo, and Taesup Moon. Proceedings of Neural Information Processing Systems (NeurIPS), December 2019

장병탁공과대학 컴퓨터공학부

  • 연구실/전공분야바이오인텔리전스 랩
  • 연구분야(AI 원천기술)Learning & Reasoning,Brain & Mind,Language & Cognition,Language & Cognition
  • 연구분야(X+AI)Humanities/Social Sciences,Bio,Brain

대표논문

Answerer in questioner's mind: Information theoretic approach to goal-oriented visual dialog, S.-W. Lee, Y.-J. Heo, B.-T. Zhang, The 32nd Annual Conference on Neural Information Processing Systems (NIPS 2018), (Spotlight)
Bilinear attention networks, J.-H. Kim, J. Jun, B.-T. Zhang, The 32nd Annual Conference on Neural Information Processing Systems (NIPS 2018)
Overcoming catastrophic forgetting by incremental moment matching, S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, The 31st Annual Conference on Neural Information Processing Systems (NIPS 2017)
Multimodal residual learning for visual QA, J.-H. Kim, S.-W. Lee, D.-H. Kwak, M.-O. Heo, J. Kim, J.-W. Ha, and B.-T. Zhang, In The 30th Annual Conference on Neural Information Processing Systems (NIPS 2016)

이인아자연과학대학 뇌인지과학과

  • 연구실/전공분야Laboratory for Behavioral Neurophysiology of Memory
  • 연구분야(AI 원천기술)Learning & Reasoning, Brain & Mind
  • 연구분야(X+AI)

대표논문

Ahn JR, Lee HW, and Lee I (2019). Rhythmic pruning of perceptual noise for object representation in the hippocampus and perirhinal cortex in rats. Cell Reports 26
Jung MW, Lee H, Jeong Y, Lee JW, Lee I (2018). Remembering rewarding futures: A simulation‐selection model of the hippocampus. Hippocampus 28
Ahn JR, Lee I (2017) Neural correlates of both perception and memory for objects in the rodent perirhinal cortex. Cerebral Cortex 27
Lee I, Lee CH (2013) Contextual behavior and neural circuits. Frontiers in Neural Circuits 7
Lee I, Yoganarasimha D, Rao G, Knierim J (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430