NeurIPS 2021에서 서울대 논문 18편 채택 > NEWS | 서울대학교AI연구원(AIIS)

NEWS

연구원 소식 NeurIPS 2021에서 서울대 논문 18편 채택

본문

2021 NeurIPS에서 서울대학교 논문이 18편 채택되어 역대 최고 기록을 경신하였다. 공과대학에서는 기계공학부 박종우 교수팀, 컴퓨터공학부 김건희 교수팀, 송현오 교수팀, 전병곤 교수팀, 장병탁 교수팀에서 각 1편, 전기정보공학부 문태섭 교수팀, 윤성로 교수팀, 한보형 교수팀에서 총 4편, 산업공학과 이재욱 교수팀의 2편이 채택되었다. 자연과학대학에서는 수리과학부 류경석 교수팀, 통계학과 조명희 교수팀이, 융합과학기술대학원 지능정보학과에서는 이교구 교수팀과 전동석 교수팀에서 각 1편을 발표한다. 또한 컴퓨터공학부 이경재 학생등 서울대 대학원생과 기업이 협업한 논문 3편이 채택되어 주목을 받았다. 


2021 NeurIPS 채택 논문 

  • Time Discretization-Invariant Safe Action Repetition for Policy Gradient Methods (Seohong Park, Jaekyeom Kim and Gunhee Kim) #김건희 교수팀
  • A Geometric Structure of Acceleration and Its Role in Making Gradients Small Fast (J. Lee, C. Park, E. K. Ryu) #류경석 교수팀
  • SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning (Sungmin Cha, Beomyoung Kim, Youngjoon Yoo, and Taesup Moon) #문태섭 교수팀
  • Neighborhood Reconstructing Autoencoders (Yonghyeon Lee, Hyeokjun Kwon, Frank Park) #박종우 교수팀
  • Uncertainty-Based Offline Reinforcement Learning with Diversified Q-Ensemble (Gaon An, Seungyong Moon, Jang-Hyun Kim, Hyun Oh Song) #송현오 교수팀
  • Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (Jungbeom Lee, Jooyoung Choi, Jisoo Mok, Sungroh Yoon) #윤성로 교수팀
  • Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations (Hyeong-Seok Choi, Juheon Lee, Wansoo Kim, Jie Hwan Lee, Hoon Heo, Kyogu Lee) #이교구 교수팀
  • Towards Better Understanding of Training Certifiably Robust Models against Adversarial Examples (Sungyoon Lee, Woojin Lee, Jinseong Park, Jaewook Lee) #이재욱 교수팀
  • Parameter-free HE-friendly Logistic Regression (Junyoung Byun, Woojin Lee,  Jaewook Lee) #이재욱 교수팀
  • Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning (Kibeom Kim, Min Whoo Lee, Yoonsung Kim, JeHwan Ryu, Minsu Lee, Byoung-Tak Zhang) #장병탁 교수팀
  • Activation Sharing with Asymmetric Paths Solves Weight Transport Problem without Bidirectional Connection (S. Woo, J. Park, J. Hong, and D. Jeon) #전동석 교수팀
  • Terra: Imperative-Symbolic Co-Execution of Imperative Deep Learning Parograms (Taebum Kim, Eunji Jeong, Geon-Woo Kim, Yunmo Koo, Sehoon Kim, Gyeong-In Yu, Byung-Gon Chun) #전병곤 교수팀 
  • Doubly Robust Thompson Sampling with Linear Payoffs (Wonyoung Kim, Gi-Soo Kim, Myunghee Cho Paik) #조명희 교수팀
  • Learning Student-Friendly Teacher Networks for Knowledge Distillation (Dae Young Park, Moon-Hyun Cha, Changwook Jeong, Daesin Kim, and Bohyung Han) #한보형 교수팀
  • Learning Debiased and Disentangled Representations for Semantic Segmentation (Sanghyeok Chu, Dongwan Kim, and Bohyung Han) #한보형 교수팀
  • SWAD: Domain Generalization by Seeking Flat Minima (Junbum Cha (Kakao Brain) · Sanghyuk Chun (NAVER AI Lab) · Kyungjae Lee (서울대학교) · Han-Cheol Cho (Intel Korea) · Seunghyun Park (Clova AI Research, Naver Corp.) · Yunsung Lee (Korea University) · Sungrae Park (UPSTAGE))
  • Neural Bootstrapper (Minsuk Shin (University of South Carolina) · Hyungjoo Cho (서울대학교) · Hyun-seok Min (Tomocube) · Sungbin Lim (UNIST))
  • MERLOT: Multimodal Neural Script Knowledge Models (Rowan Zellers (University of Washington) · Ximing Lu (Department of Computer Science, University of Washington) · Jack Hessel (Cornell University) · Youngjae Yu (서울대학교) · Jae Sung Park (University of Washington) · Jize Cao (Department of Computer Science, University of Washington) · Ali Farhadi (University of Washington, Allen Institute for Artificial Intelligence) · Yejin Choi (University of Washington)) 

댓글목록

등록된 댓글이 없습니다.